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A Flexible Hypersonic Vehicle Model Developed With Piston Theory

Michael W. Oppenheimer *
David B. Doman f
Air Force Research Laboratory, WPAFB, OH 45433-7531

I. Abstract

For high Mach number flows, M > 4, piston theory has been used to calculate the pressures on the
surfaces of a vehicle. In a two-dimensional inviscid flow, a perpendicular column of fluid stays intact as it
passes over a solid surface. Thus, the pressure at the surface can be calculated assuming the surface were a
piston moving into a column of fluid. In this work, first-order piston theory is used to calculate the forces,
moments, and stability derivatives for longitudinal motion of a hypersonic vehicle. Piston theory predicts a
relationship between the local pressure on a surface and the normal component of fluid velocity produced
by the surface’s motion. The advantage of piston theory over other techniques, such as Prandtl-Meyer flow,
oblique shock, or Newtonian impact theory, is that unsteady aerodynamic effects can be included in the
model. The unsteady effects, considered in this work, include perturbations in the linear velocities and
angular rates, due to rigid body motion. This provides a more accurate model that agrees more closely with
models derived using computational fluid dynamics or those derived by solving Euler equations. Additionally,
piston theory yields an analytical model for the longitudinal motion of the vehicle, thus allowing design trade
studies to be performed while still providing insight into the physics of the problem.

II. Introduction

In the 1980’s, the National Aerospace Plane (NASP) program commenced, with its goal being a feasibility
study for a single-stage to orbit (SSTO) vehicle, which was reusable and could take off and land horizontally.
The NASP was to be powered by a supersonic combustion ramjet (scramjet) engine. Although this program
was cancelled in the 1990’s, a great deal of knowledge was gained and it spawned future programs, including
the hypersonic systems technology program (HySTP), initiated in late 1994, and the NASA X-43A. The
HySTP’s goal was to transfer the accomplishments of the NASP program to a technology demonstration
program. This program was cancelled in early 1995. The NASA X-43A set new world speed records in 2004,
reaching Mach 6.8 and Mach 9.6 on two separate occasions with a scramjet engine. These flights were the
culmination of NASA’s Hyper-X program, with the objective being to explore alternatives to rocket power
for space access vehicles.

With renewed interest in space operations worldwide, there is an interest in hypersonic aerodynamics
research. The scramjet engine will likely play a major role in future hypersonic vehicles. Unlike a conventional
turbojet engine, a scramjet engine does not use high speed turbomachinery to compress the air before it
reaches the combustor. Instead, it relies upon the rise in pressure across oblique shock waves located in front
of the inlet. Furthermore, the flow through the entire engine is supersonic in contrast to a ramjet, where the
flow speeds are subsonic through the combustor. On configurations like the NASP and X-43A, the underside
of the airframe must function as the air inlet mechanism and the exhaust nozzle. Therefore, integration of
the airframe and engine are critical to success of a scramjet powered vehicle.

Scramjets could be used as part of a multi-stage launch vehicle that would include multiple propulsion
systems to perform a mission. The factor driving research towards scramjets and away from rockets is cost;
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scramjets would substantially lower costs because it is an airbreathing engine. Airbreathing engines don’t
require oxidizer to be carried by the vehicle, hence increasing the payload and reducing the quantity of fuel
carried.

Unsteady aerodynamics is another key technology in the development and optimization of future hyper-
sonic vehicles. The combined effects of a slender flexible vehicle travelling at high speeds and subjected to
large forces may lead to significant unsteady aerodynamic effects. Hence, understanding the concepts and
consequences of time-dependent aerodynamic flows is critical to the success of this type of vehicle.

Piston theory is a technique which has been used for years to determine the pressure distributions on
an airfoil/vehicle, when the Mach number is sufficiently high. Lighthill' discussed the application of piston
theory on oscillating airfoils some 50 years ago. Ashley and Zartarian? discuss piston theory while providing
a number of examples of the application of piston theory to specific problems. More recently, Tarpley®
discussed the computation of stability derivatives for a caret-wing waverider using piston theory, which
requires the analysis of unsteady flow over the vehicle.> Piston theory allows the inclusion of unsteady
aerodynamic effects in the model and a closed form solution can be found for these unsteady effects.

In this work, piston theory is applied to a hypothetical 2-dimensional hypersonic vehicle powered with
a scramjet. Section III describes the vehicle analyzed in this work, while the steady forces on the vehicle’s
surfaces are calculated in Section IV. The afterbody effects are included in Section V, where the pressure
distribution and force due to exhaust plume are evaluated. The control surface, which is a single elevator,
is examined in Section VI, analysis of the flow regions is performed in Section VII, total body forces and
moments are derived in Section VIII, while stability derivatives are calculated in Section IX. The engine
model is developed in Section X and some results from an open-loop simulation are provided in Section XIII.

IIT. HSV Model

Figure 1 shows the hypersonic vehicle considered in this work.? The vehicle consists of 4 surfaces:

L=100

X; =55 X, =45

Figure 1. Hypersonic Vehicle.

an upper surface (defined by points cf) and three lower surfaces (defined by points cd, gh, and ef). All
pertinent lengths and dimensions are in units of feet and degrees, respectively. The total length of the
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vehicle is L = 100 ft and the notation for lengths is Ly = length of the forebody, L,, = length of the engine
nacelle, L, = length of the aftbody, L. is the length of the elevator, Z; is the distance from the C.G. to the
front of the vehicle, Z, is the distance from the C.G. to the rear of the vehicle, z.s and z., are the distances
from the C.G. to the midpoint of the elevator in the x and z directions, respectively, and h; is the engine
height. The vehicle lengths are

L =100 ft
L; =47 ft
L,=33ft
L, =20 ft
Lo )
Ty =55 ft
T, =45 ft
zes = 30 f1
Zes = 3.5 ft
h; =3.5 ft
The vehicle angles are
v = 3°
1,1 = 6° (2)
Ty = 14.41°

Additionally, the vehicle mass and moment of inertia are

Mass = 300 slug 3)
Jyy = 500,000 slug — ft?

and the mean aerodynamic chord (¢) and planform area (S) are defined as

L

g2 (4)

The goal is to apply piston theory to this vehicle to determine the pressure distribution on the surfaces
of the vehicle, which, in turn, can be used to evaluate the forces and moments. The pressure on the face of
a piston moving into a column of perfect gas is?

2y
P y—=1V,\" !
Poo<1+ 2 aoo) (5)

where the subscript ”oco” refers to the steady flow conditions past the surface, V,, is the velocity of the surface
normal to the steady flow, a., is the freestream speed of sound, and P is the surface pressure. Taking the
binomial expansion of Eq. 5 produces

P 2y v—17V, YV,
Bl Tl D SO RIS 3
P +fy—1 2 (s +aoo (6)

Multiplying through by P, and using the perfect gas law (P = pRT) and the definition of the speed of
sound (a? = yRT) yields the basic result from first-order linear piston theory

P = Pso + poctoo Vi (7)
where « is the ratio of specific heats and R is the gas constant. The infinitesimal force due to the pressure is
dF = —PdAn (8)

where dA is a surface element and n is the outward pointing normal. Substituting Eq. 7 into Eq. 8 yields

dF = (—Pso — Pootoo Vi) dAn (9)
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The normal velocity can be computed by taking the dot product of the flow velocity over a surface and the
outward pointing normal for that surface. Hence, Eq. 9 becomes

dF = (=P — poctoc [V - 1]) dAn (10)

Equation 10 is the basic result upon which this work is based. From this equation, it is seen that in order
to compute the forces acting on a surface, one must determine the properties of the flow past the surface
(properties behind a shock, expansion fan, or freestream), the velocity of the surface relative to the airstream,
V, the outward pointing surface normal, n, and the surface element, dA. The work that follows will develop
these quantities for the upper surface and the lower surfaces.

IV. Vehicle Surface Pressure Distributions and Forces

To compute the forces, moments, and stability derivatives, consider small perturbations, from a steady
flight condition at M., in the velocities u and w and the rate g. On the upper surface, the surface is modelled
as a piston moving into a column of fluid that has the properties of the flow behind an oblique shock wave, an
expansion fan, or freestream (flow properties are determined by the angle of attack). Likewise, on the lower
surface, the surface is modelled as a piston moving into a column of fluid that has the properties of the fluid
behind the oblique shock. An oblique shock is required on the lower surface for proper engine operation.
Figure 2 shows the regions of interest.

E Region 5
Ms, P5

-
"
.
»
»
-
"
-
.
-
-
»
-
0

Yo, ".‘-..-.. Reglon 3
ﬂ,. .."'"-...MS’ P3

Figure 2. Hypersonic Vehicle, Oblique Shocks, and Pressure Regions.

To begin the development, first consider the upper surface. The velocity of a point on the upper surface
due to the velocity and rate perturbations is

Ve = (Vicosip +u)i+ (Visintiy +w)k +w X reg (11)

where 7, k are unit vectors in the x and z body axes, respectively, w is the angular rate vector, « is the angle
of attack, and V; is ‘the velocity of the flow on the upper surface (see region 1 in Fig. 2). For longitudinal
motion only, w = ¢j where j is a unit vector in the y body axis direction. Tn Eq. 11, r.s is the position
vector of a point on the upper surface given by

ref :chJ’AL'-F—f-TCfZIAC:l‘%—FtaHTLU (l‘*ff)iﬂ (12)
—T, <z < Ty

4 of 24

American Institute of Aeronautics and Astronautics



According to Eq. 8, a normal vector to the upper surface is also needed. The upper surface outward pointing
normal vector is .
n.s =sint yt — cosy,uk (13)

For the lower surface defined by the points ¢ and d in Figure 1, we use the velocity of the flow after the
oblique shock to obtain

Vea = (VacosTip +u)i+ (—VasinTy g +w)k+w X reg (14)
while for the surface defined by points g and h
Vgn = (Vs +u)i 4+ wk 4+ w X rgp (15)

where r.q and rg;, are position vectors of a point on the lower surface given by

Ted = Ted,t + Tea,k =zt —tanty  (x — Zy) k

_ _ (16)
Ty — Ly <z <7y
Yoh = Tgn, i+ Ton.k = @i+ (Lytanty  + hy) k (17)
(Zf—Lj) = Ln <x<Tj— Ly
The normal vectors for the lower surfaces are
Ny = sinTLLz—l—cosrLLlAc (18)
ngp = 1]%
Performing the cross products required by Egs. 11, 14, and 15 gives
W X Tef = qtanmpy (¢ — Tf)1 — quk (19)
W X Tog = —qtanTy g (x — Zf)i — quk (20)
w Xty =q(Lstant 4 hi)i — quk (21)

According to Eq. 10, the pressures on the surfaces of interest are

P.y = P1 + p1ay (Vg - ney)
P.g= Py + p2as (Veq - Deq) (22)
Py, = P3+ p3as (Vgp - ngp)

Substituting the results of Eq. 22 into Eq. 8 gives

dFcs ={—P1 — pra1 (Vs -nep)} dAcyngy
chd - {_P2 — p2a2 (Vcd . ncd)} dAcdncd (23)
dFgn = {=P3 — psaz (Vgn - ngn) } dAgnngn
Using Egs. 11, 14, and 15 and the appropriate normal vectors (Egs. 13 and 18), the dot products in Eq. 23
become
Vs -nes =[u+qtant y (x — Zy)]sinm g — [w — gz] cos T,
Ved-Neg =[u—qtanty  (x — Zy)|sinty g + [w — gz]cos Ty p, (24)
Vgn-ngp =w —qx

Note that the steady terms cancel as a result of taking the dot product. Using Eq. 24 in Eq. 23 yields

dF.; = (=P, — prai {[u+qtanm y (z — Zf)|sinT y — [w — qz]cosTy,u}) dAcynes
dF.q = (—P2 — paas {{u — gtan 1 (x — Zy)]sin7y p + [w — gz] cos 1,1 }) dAcaNeq (25)
dF g, = (—P3 — psasz {w — qz}) dAgpng,
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The next step is to determine the upper and lower surface elements. Note that the vehicle model is 2-
dimensional with unit depth into the page. Hence, the upper surface element, dA.; can be written as

dAes = dLes(1) (26)

where dL.s defines a length of interest on the upper surface and the multiplying factor of 1 is due to the
vehicle’s unit depth. The surface element can be written as

dAcp = \/dz? + dz2(1) (27)

From Eq. 12,
z=tanm y (x — Ty) = dz = tan 1 ydx (28)
Using Eq. 28 in Eq. 27 yields
dA.; = \/da:2 +tan? y ydz?(1) = dzy/1 + tan? 715 (1) = dzsecTrp (1) = sec 1y ydx (29)
Similarly, the surface elements for the lower surfaces become
dA.q = secty dz (30)
dAgp, = dx (31)

Now, the incremental force on the upper surface (see first entry in Eq. 25) becomes

dF s = (—=P1 — praq {[u + gtan7y y (z — Ty)]sinyuv — [w — gz] cos 71,y }) nep secy yde (32)
Using similar analysis, the incremental forces on the lower surfaces become

dF.q = (—P2 — paas {{u — gtan 1 (x — Ty)]sinmy 1 + [w — gz] cos 11,1 }) Degsec Ty Ldx (33)

dF 4, = (—P3 — p3az {w — qz}) ngpdx (34)

It will be useful to separate the steady forces from the unsteady forces at this point. In Section IX, we
will model the unsteady effects using a stability derivative approach. To compute the steady forces, the
components of the incremental forces related to the steady flow are integrated over the surface of the vehicle.
For the upper surface, this becomes

Ty Ty . .
F. = / (chf)steady = / -Py [sin T1,Ul — COS T1,Uk} secTy,udx (35)

—Z, —Za

while, for the lower surfaces, the forces are

zf Ty R .
Fo.= / (dF cd) greaay = / o [Sin 71,1t + cos TLL]{?:| sec1,r.dx (36)
zj—Ly zj—Lg
Zy—Ly Ty—Ly .
F.qh :/ (ngh)steady :/ _ngdm (37)
(Tg—Ly)—Ln (Zg—Lys)—Ln

For the consideration of aeroelastic effects in future work, the upper surface force is separated into forebody
and afterbody components. Thus, Eq. 35 becomes

0 Ty
F.;= / -P [sinn’Ui — COSTl’Uk} sec Ty, ydz +/ -P [sinTLUi —cosTy,uk|secT yd
0

- (38)
= Fcfa + Fcff
Performing the integrations yields
F. s, = —PiZ,secTiUu sinTLU% — COSTLU]% = cha% + Zcfaiﬁ )
2 7 4 A 39
Fefp = —Pizgsecriy |sinTy yi — costyuk| = Xeg,i+ Zep, kb
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where X.¢,, Z.s, are the components of the aftbody upper surface force in the x and z directions, respectively,
and X, Zcs, are the components of the forebody upper surface force in the x and z directions. For the

lower surfaces, integration of Eqs. 36 and 37 produce
F.q = —PyLysect  |sin 7'17,;2 + cos leLlAc = Xcdi + chl% (40)
th = —RgLn]% = Xgh% + Zghif

where X, and Z, are the components of the lower surface forces. Equations 39 and 40 give the rigid body
steady forces on this vehicle due to pressure distributions on the upper and lower surfaces.

V. Afterbody

The flow on the afterbody of the vehicle is bounded by the vehicle surface (surface ef in Fig. 1) and a
shear layer between the freestream atmosphere and the exhaust gas of the engine. Hence, external nozzle
analysis must be performed to determine the pressures on surface ef. According to Chavez,® the pressure
distribution along the nozzle surface can be approximated by

P
1+ —2—(F= - 1)

COS(TIYU+T2)

Puy(s) ~ (41)

where P,y is the pressure on the afterbody, P, is the pressure at the engine exit, Py is the freestream
pressure, and s is the distance from the lower apex (point e) to the point of interest along the vehicle’s
afterbody surface (see Fig. 1). The force produced by the external nozzle can be calculated by integrating
Eq. 41 over the rear ramp of the vehicle:
Lq
Fef _ /cos(‘rly(j‘(“"z) Pe dS (42)
0 14+ —F2— ( = — 1)

cos(rl’U+7-2)

Performing the integration and simplifying yields
L,P.P In Pe
cos (T u +72) (Pe — Px) P

Foy = (43)

Equation 43 provides the magnitude of the force due to the external nozzle. Its direction is perpendicular
to the rear ramp. Hence, the vector force due to the external nozzle is

L,P.P P or. A N -
In 2= | = k| = Xepi+ Zogh (44
cos (1o + 72) (P — Po) n P sin (71, + 72) 1 — cos (T, + T2) o+ Zey (44)

F.; =

where X ¢ and Z.; are the axial and normal force components of the external nozzle force.
For use in calculating stability derivatives, it is necessary to determine the force on the rear ramp due to
perturbations in the velocities © and w and the rate q. The differential force on the rear ramp is

dFef = (—Pef — pefef [Ves - Def]) dAcsney (45)

where P,y is the afterbody pressure distribution given by Eq. 41, pc¢, acs are the density and speed of sound
on the rear ramp, Vs is the flow velocity on lower surface ef, n.s is the normal vector to lower surface ef,
and dA.y is the surface element for surface ef. The position vector, normal vector, and surface element for
this surface are given by:

Tef = xi + [tan (r,u+ 1) (x+Z,) — Ltan7 ] k=axi+ Ter k

i _ (46)

—Tq SxSLa_ma,
ey = —sin (m,y + 72) i + cos (r1,u + 72) k (47)
dAcy = sec(m,u + 12) dx (48)

Using Eqs. 46-48 in Eq. 45 yields
dF s = (—Pef — pefer {— (u+ qreys.)sin (m,u + 72) + (w — gx) cos (T1,u + 72)}) NefdAcs (49)

Integration of the steady component of Eq. 49 yields the same result as in Eq. 44. The unsteady components
will be utilized later in this work for the computation of stability derivatives.
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VI. Control Surfaces

The control surface is an elevator located near the tail of the vehicle as shown in Fig. 1. The elevator is
modelled as a flat plate hinged at its midpoint so the entire surface deflects. The length of the elevator is
L. = 17ft. Positive J, is defined as trailing edge down. Once again, the velocity of the flow on both sides of
the elevator must be determined. Proceeding in a manner similar to that which has already been done, it is
found that

V., = (Vicosde +u)i+ (—Visind, + w)k + w x r, (50)

and
Ve, = (Vscosde +u)i+ (—Vssind, +w)k +w x r, (51)

where V,, is the flow velocity on the underside of the elevator, V., is the flow velocity on the upper surface
of the elevator, w = ¢, r. is a position vector from the vehicle c.g. to an arbitrary point on the elevator, and
V4, Vs are fluid velocities (freestream, behind oblique shock, or behind expansion fan). The position vector
is found to be A A

Te = 1 — [2Zes + tande (T + Zcs)] k

(52)
—Les — %cos&e <z < —Tes + %cos&

where z.s and z.; are the x and z positions of the midpoint of the elevator referenced to the c.g. As shown
in Fig. 1, z.s = —30ft and 2., = —3.5ft. For this control surface, outward pointing normal vectors for both
the lower and upper surfaces are needed. These normals are computed as

n,, = —sind.1 — cosd.k

u n - (53)
n., = sindet + cosd.k
To evaluate the cross-product in Eq. 51, we use Eq. 52 to obtain
W X Te = —q[2es + tan b (z — )] 1 — quk (54)
Then, the differential forces on the upper and lower surfaces of the elevator become
dFeU = [_PS — Psas {VeU ey, }] Ne,, dAe (55)
dF, = [~Py — paas{Ve, «n, }n., dA.
where
Ve, oo, = — (u— q{zes + tande (x — xes)}) sinde — (w — gx) cos 0 (56)
Ve, -n., = (u—q{zes +tand. (x — xe5)}) sinde + (w — gz) cos (57)
and
dA. = secd.dx(l) = secd.dx (58)
Hence, the upper and lower forces on the elevator can be computed as
—wcs-l—%ﬁ cos Oe . .
F., = / [—P5 — psas {Ve, «ney, 1] [— sin det — cos 6ek} sec dodx (59)
—zcs—%ﬁ cos d,
—zcs+% cos e R R
F., — / ) [Py — psag {Ve, 0, }] [Sin Jei + cos M} sec dodiz (60)
—Les— 5 COSJe

Using the steady component of Eq. 56 in Eq. 59 and the steady component of Eq. 57 in Eq. 60, the steady
forces on the elevator become

—zcs—l-%i cos 0, . R
F., = / —P; {— sin 6.7 — cos 5ek} sec d.dx (61)

L
—Les— 5 COS Je

—mcs—l-% cos de R .
F., = / —P [sin 00t + cos 5ek} sec d.dx (62)

—zcs—% cos §e
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Evaluating these integrals yields
F., = —BsL. {— sin 8.7 — cos 6J€] = Xeug + ZeUI% (63)

- A~

F., = —P,L, [sin 8.1 + cos 561%} = X. i+ Ze, k (64)

VII. Flow Analysis

In the preceding analysis, the properties of the flow on the upper, lower, and control surfaces have not
been defined. In this section, the properties of the flow will be determined. Specifically, the angles of
attack/control deflections at which shock waves or expansion fans are created will be delineated.

By examination of Fig. 1, the following relationships can be determined:

if a=T1y— freestream : Vi = Vi, p1 = Poc; @1 = Goc
if a> 1,y — expansionfan (65)
if a <ty — shock(compression)

The wedge angles associated with the upper surface, for calculation of flow properties behind the shock or
expansion fan, are as follows:
if a> LU — eUezpansion
if a<my—0u =—a+TU

=a—TL,U (66)

shock
The above information is used to determine the flow properties for the upper surface, namely, Vi, p1, and
ay. For lower surface cd, the relationships become

if a=—m = freestream : Vo =V, p2 = poo, G2 = Qoo
if a> —7 1 — shock(compression) (67)
if a < -1, — expansionfan

Lower surface cd wedge angles are as follows:

if a> —T1,L — 9Ls,mck =a+TL

. (68)
Zf a< —T — 9[,

=—a—T1L

expansion

Physically, for the scramjet engine to work properly, an oblique shock must form on the underside of the
vehicle to increase the pressure at the inlet. This effectively places a lower limit on the angle of attack and
requires that the angle of attack be such that an oblique shock forms on the underside of the vehicle. Hence,
from Eq. 67, the angle of attack must satisfy

a > —T1,L (69)

In other words, —71 1 is an absolute lower limit for angle of attack, with the engine on; however, the engine
will cease to function before this lower limit is reached. With this limit in place, a bow shock will form on
the underside of the vehicle. For lower surface gh, it is necessary to calculate the angle at which the shock
exactly impinges on the point g of the engine nacelle. This angle, denoted by Tpowshock; 1S

L i
ftanleL—Fh,) (70)

—1
Thowshock — ¢ + tan
Ly

Let the bow shock angle be denoted by 5. If 8 > Thowshoek, then the shock misses the point g and the flow
properties on lower surface gh are computed using the flow properties behind the oblique shock (Va, p2, as)
as the initial conditions. Then, an expansion fan forms at point g. If 8 < Tpowshock, then either the shock is
on the lip (point g) or the shock is inside the engine inlet. In either case, freestream properties are used to
compute V3, p3, as. The following steps are used to determine the flow conditions over surface gh.

1. Calculate shock angle, 3, from surface cd.
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2. Tt B > Tpowshock, an expansion fan forms at point g and the flow properties behind the oblique shock
wave are used as input to the expansion fan flow equations with a wedge angle of 71 1.

3. If B < Thowshock, an expansion fan forms at point g and the freestream flow properties are used as input
to the expansion fan flow equations. The wedge angle in this case is only a function of angle of attack.
If @ = 0, then the flow properties in region 3 are freestream, that is, V3 = Vi, p3 = poo, and a3z = G-
If @ > 0, a shock forms at point g with the shock angle computed using a wedge angle of a. If o < 0,
an expansion fan forms on the underside of the engine and flow properties in region 3 are calculated
using a wedge angle of —a.

For the control surface, the flow behind the leading edge of the elevator is determined by the elevator
deflection angle and the angle of attack. More specifically, if . = —a then both the top and bottom of
the elevator experience the freestream. Therefore, V; = V5 = Vi, p4s = p5 = poo, and aq4 = a5 = Goo. If
de > —a, then an expansion fan forms on the top of the elevator, while the bottom of the elevator experiences
compression and a shock forms. In either case, the wedge angle is « + d.. If §. < —a, a shock forms on top
of elevator and an expansion fan is on the bottom of the elevator. In this case, the wedge angle for the shock
and expansion fan is —a — J,.

VIII. Total Forces and Moments

Having determined the forces on each of the surfaces, the moments about the c.g. that each force produces
must be determined. To do this, the location of each force on the vehicle must be computed. Figure 3 shows
the forces acting on the vehicle. Consider first the upper surface with the forebody and aftbody forces given

Fy

a

Flcd

Figure 3. Forces Acting on the Hypersonic Vehicle.

in Eq. 39. The forebody force acts at the point

)

|
o |3
|
o |3

| ( tanTLU) (71)

10 of 24

American Institute of Aeronautics and Astronautics



while the upper surface afterbody force acts at

Fcf : (—x—a,7<:i‘f+x—a> tanﬁU) (72)
a 2 2 b
For the lower surfaces, the forces act at
L Ly
F.: jf——f,—ftan'rl,; (73)
22 '
_ Ly
thl 1‘f*Lf*7,LftanT17L+hi (74)

The force due to the external nozzle acts at a point given by
Fef : (ff — Lf — L, — J'_JFEf CcoSs (TI,U =+ 7'2) ,Lf tanﬁ’L — i‘Fef sin (TI,U + 7'2)) (75)

where Ty, is the x point of the center of mass of the pressure distribution on the rear ramp assuming an
axis system centered at point e with x axis pointing along Iline ef and the z axis pointing up. In other words,
the center of mass of the pressure distribution was computed in a local coordinate frame (local to surface
ef). Then, this distance was referenced to the c.g. of the vehicle. Tn Eq. 75, T, is given by

Lq Ps

T = — In 76
Fy cos (Tl,U +72)In If; P.—- P, P, (76)

The elevator force acts at
Fo:(—Zes, —2ecs) (77)

Equations 39, 40, 44, 63, and 64 give the axial and normal force components of the forces acting on the
vehicle. Now, the moments due to these forces can be calculated. Positive moment is defined as clockwise or
the direction that tends to increase angle of attack, while negative moment is defined as counter-clockwise.
The moment arms are given by Egs. 71 - 75, 77.

Pz?
Mcff S (1 — tan? Tl,U) (78)
9 Zq z2

My, = —PiZ,tan” 1y (J_Jf + 7) + P17a (79)

Lt L
Mg = —PyLytanty g (%) +P,L; <xf - 7f> (80)

_ Ly,

Mgh = PsLn | Ty — Ly — — (81)
Mef = :I:Xef [Lf tanTy g — iFef sin (Tl,U + Tg)] — Zef [{ff — Lf - L, — iFef CcOos (TI,U + TQ)] (82)

where Zp,, is given in Eq. 76 and X.r, Z.; are expressed in Eq. 44. The sign on the first component of M.
will depend on the vehicle’s geometry. The rule used to determine the sign is as follows:

+ if Lytantp — Zr,, sin(r,v +72) >0

— if Lytantp — Zr,, sin(r,p +72) <0 (83)
The moments produced by the elevator are

M., = —PsL.sin6czcs + P5Le cOS0cZcs (84)
M., = PyLcsindezes — PyLe cos 8.2 s (85)

The total aerodynamic forces and moments on the vehicle are
Xiotal = Xep; + Xep, + Xea + Xgn + Xep + Xe, + Xy, (86)
Ztotal = Zefy + Zefy + Zed + Zgh + Zef + Zey, + Zey, (87)
Miotar = Mey;, + Meg, + Meq + Mgp + Meg + Me,, + M, (88)
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IX. Stability Derivatives

The stability derivatives of interest for this vehicle configuration are Czqo, Cra, Crma, Czq, and Chyg.
These computations are complex and, in an attempt to simplify them, the following notation will be used
when necessary:

L,—%,)% &2
Ln= 35 "%
Lo—%a z

Lepy = =5+ 7% (89)
L — (La—%a)” T,
efs i 7
Lo—%.)° | &5
Lejy = ool + %

- Qe —0Qco a—Ta 2 Qe = A _
Al = Pele + (pe=poo)( 1% e Y _ Lo (pe - Poo) (La - -Ta) - ‘]% (ae - aOO) (La - ma)

Ay =

Qe
a

22 (pe = poo) + 45 (A = 0o0) = 7 (e — poc) (@ — 100) (L — Ta) (90)

Ay = (pe_pool)/éa(:_aoo)
fr =tan(1,y + 72)
fo=Ltanm
fs =sin (11,u + 72)
fa = cos (Ti,u + T2)

(91)

Additionally, the pressure on the rear ramp of the vehicle (surface ef) is given by Eq. 41, which is a function of
the distance moved along the rear ramp. Thus, this pressure distribution is not constant along the surface.
At point e, the pressure is given by the engine exit properties (P,.), while at point f the pressure is the
freestream pressure (Ps,). An obvious choice for the temperature distribution on the rear ramp, T,y, is a
form similar to the pressure, so that

T
1+ —F2— (7:"; - 1)

P

Tef (S) ~ (92)

Then, the speed of sound and density can be calculated from the definition of speed of sound and the perfect

gas law:
aef = \/YRIcy
— Pef (93)
Pef = RT.;

Both acs and pey factor into the stability derivative calculations. Unfortunately, the expressions in Eq. 93,
when used in the stability derivative calculations do not allow determination of a closed-form solution. In
order to facilitate a closed-form solution, the following approximations for the speed of sound and density
on the rear ramp will be used in the stability derivative calculations:

pes = 22 (0 = {La = Ta}) + e

a

a —a —_ (94)
Qef = ( °_°La”) (x — {Lq — Ta}) + ae

where

These are first-order approximations, which capture the boundary conditions.

A. o« Derivative of Z-Force Coefficient

To compute the change in Z-force component due to a change in angle of attack, the infinitesimal force
expression that contains the vertical velocity perturbation, w, must be integrated. Thus,

(€)= =5 @)= — [ / Y @)+ / <chd>z_w]

—Zq if*Lf
1 if—Lf Lo—Za
+—= / (ngh)z—w + / (dFef)z—w
405 |Ja;-Ls-1L, — %,

12 of 24

American Institute of Aeronautics and Astronautics



where f (chf)sz is the differential force, on the upper surface, in the z direction, due to w motion and
likewise for the other surfaces. Using the appropriate differential force elements from Eq. 25 in Eq. 96
produces

1 Ty Tyf
Cz2)p=—=3 [/ —pira1w cos Ty, yde —/ P2a2w cosn,de]

qOOS —Zq a_Cf—Lf
1 xf Lf L —Tq (97)
—I——S / —psazwdr + / —Pefefwcos (T1,u + T2) da
oo if*Lf*Ln Tq
Performing the integrations yields
1
(Cz)y = wq_S [—pra1cos T,y (T + Zo) — p2azcos Ty, Ly — psasLy,)
= (98)
Ccos (T1,u + T
_w% [AlLa + A2Lefg + A3Lef3}
If - <1 then ¢~ ~ a. Thus, w = Va. Therefore,
oC V.
8—07 = q;“iS’ [—p1a1 cos T,y L — paagcos Ty, Ly — psasLy]
= (99)
Voo cos (1.7 + T
- q( 1:9U 2) [AlLa + A2L€f2 + A3L€f3}
[e.e]
B. «a Derivative of X-Force Coefficient
The change in X-force due to a change in angle of attack can be calculated using
1 Ty Ty
©x), = [, = | [T, [ @,
UES —Zq i‘f—Lf
1 i}f—Lf L,—Z (100)
+— / (dFgn),_, + / (dFef),_,
G0 Zg—Ly—Ln —Zq
Substituting in the differential forces yields
1 Ty Ty
Cx), = —— praywsin Ty ydr — p2asw sin 7y r,dx
w S k] )
T L =2 o (101)
1 Zy—Ly Lo—7%q
—|——S / —psasw0dx + / pefbefwsin (1T1,y + 72) dx
oo Zy—Ly—L, —Z,
Performing the integrations, simplifying, and assuming that - — < 1 s0 that ¢~ ~ a gives
oC 1 . . Voo sin (mi.uy + T
8—;{ = q—SVoC [pra1sinTy yL — peagsinmy L] + q< 1:; 2) [A1Lq + AsLey, + AsLy,]  (102)

C. a Derivative of Pitching Moment Coefficient

For Cyyq, first find the contribution to the pitching moment due to a velocity w:

1
F — | x(dF
o= | [a® - [atam)._]
1 Ty Ty Ty— Lf L,—Z,
S_Z / (dFCf)m—w +/ dFCd ’I‘ 1u+/ ngh)z—w+/ (dFef)m—w
oo C —Zq Zy—Ly Zf—Ly—Ly —Tq

1 Tf Zf Zf— Lf Lo—Z,
- S—m / (dFCf)z—w + / (dFCd)sz + / (dFQh)z—w + / (dFef>z—w
Qoo C —Zq z;—Ly Zf—Ls—L —Za

8
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Substituting the appropriate expressions, performing the integrations, simplifying, and assuming that % <

1 so that {7~ = a yields

v _ 1 1
da e SE2

[fi (A1Leg, + AsLey, + AsLes,) + (f1Za — f2) (A1La + AL, + AsLey,)]

Voo [—plal tan 71,y sin 7'1,UL2 + paas tan Ty, 1, sin TLLLﬂ

Voo sin (14,7 + 72)

oo ST
1 1
+m§Voo [plal COST1,U (i‘? - i‘z) + paaz cos Ty Ly <2ff — Lf) — psasL, (Ln -2z + 2Lf)]

Voo cos (11,u + T2)
GoSC

[AlLefz + A2Lef3 + A3L€f4]

D. ¢ Derivative of Z-Force Coefficient

The Z-force coefficient due to a pitching motion is

(), = —5 [ (@), = [ / @)+ | <chd>z_q]

+—= + ef)a
7S p—Ly—Ln gh)z—q Lz f q

Performing the integrations and simplifying yields

0Cy 1 L

0g  45"1"2 [cosTi,u —tan T,y sin v L]
o0

1 L
—I—q Sp2a27f [cosT1, (2Z¢ — Ly) — tanty g sinty Ly
1 L,
= peas =t [—L, +2%; — 2L
o ghis, [—Ln + 274 /]
1
s [(fifs = fa) (A1Leg, + AaLegy + AsLey,) + (f1fsZa — f2f3) (A1La + A2Ley, + A3Ley,)]

E. ¢ Derivative of Pitching Moment Coefficient

The pitching moment due to a pitch rate can be calculated using
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Substituting the appropriate expressions, performing the integrations, and simplifying produces

C 1 ) L3  cosTiu , _ _ 2
8—q = _qooSEplal tan? LU [tanTLU SlIlTLU? + T (—mf + 2302 + 3x§xf)

L3 L
pP202 tan? Ti,L ltanTl,L sinTl,L—f - CUSTLLTf (2z5 — Ly)

3

Qoo C

fi
oo ST

_q fTS"E [(AlLefz + A2Lef3 + A3Lef4) (2f12f3£'a — 2f1f2f3 — f2f4 + f1f4ja)]
fi

GeoSC

[(AlLefs + A2L€f4 + A3L€f5) (f12f3 + flf‘l)]

[(AiLo + AsLey, + AsLey,) (f7 375 — 2f1fafsZa + f5 f3)]  (108)

tan T1,U sin T1,U
6

1

— COSTLU (73 4 73
4o ST (77 +2a)

3 T

pray [ (—z% + 32275 +223) +

1
(oo ST

t i L
p20a2 [%Li (2L — 3%y) + cos*rl,L?f (350? —3zsLy + L?)

1 (@ —Lg)® (@5 — Ly — Ly)°
p3a3 3 3

G0 ST

1
T [((A1Legy + AaLey, + AsLeg,) (fifs + fa) + (A1Les, + AaLeg, + AsLey,) (f1f3Ta — faf3)]

X. Engine

For hypersonic flight, the propulsion system necessary to produce the required thrust is either a rocket or
a supersonic combustion ramjet (scramjet). The advantage of a scramjet over a rocket is that the scramjet
is an airbreathing propulsion system, thus eliminating the need to carry the oxidizer onboard the vehicle.
This, in turn, allows for increased payload. The scramjet model used in this work is identical to that used by
Chavez and Schmidt.® Engine inlet conditions are primarily determined by the flow behind the oblique shock.
The scramjet consists of 3 sections; a diffuser, a combustor, and an internal nozzle. The flow through the
diffuser and nozzle is assumed to be isentropic, quasi-one-dimensional, while the flow through the combustor
is assumed to be quasi-one-dimensional in a constant area duct with heat addition. The working fluid in the
engine is assumed to be a perfect gas with constant specific heats. There are two control variables which
affect the engine: diffuser area ratio, Ap, and temperature addition in the combustor, AT,. Figure 4 shows
the engine model.

Inlet conditions to the diffuser, which are inlet conditions to the engine module, are determined from
the flow analysis of the vehicle’s lower forebody and vehicle geometry. The lower forebody flow is turned
parallel to surface cd. To determine the engine inlet conditions, the flow must be turned parallel to the
engine, with the turning angle given by 71 1. Oblique shock relations are used to determine the engine inlet
flow properties, with the flow properties in region 2 being the input, and M., ., P., , and T,, (the engine
inlet flow properties) being the outputs of the flow calculations. By turning the flow to be parallel to the
engine, a force and moment is imparted on the vehicle. The force is given by

Ae
winier = VM3 P2 (1 — cos (71,1 + 04)1 Ao A, (109)
Fionier = 7M22P2 sin (Tl,L + Ot) AdT,4n
This force acts at point d in Figure 1. Hence, the force acts at
Tinlet = ff *Lf Lf tanTLL (110)

Thus, the moment produced is given by

Minlet = Lf tan Tl,LF-Tinlet - (J_:f - Lf) E

Zinlet

(111)
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Figure 4. Scramjet Engine.

Now, the flow must be propagated through each section of the scramjet to determine the engine out-
put properties. For the diffuser, continuity is applied to determine the Mach number at the diffuser
exit/combustor inlet:

1 21(32) 1 2 1)
+36-0m]5D +ie-naz] (112)
M2 P Z,

where M. is the Mach number at the combustor inlet and M., is the Mach number at the engine inlet. The
pressures and temperatures at the combustor inlet are given by

e AN
1+35(y—1)M2 17"
Pc = PE,‘,, |: + 21(’y ) Ein:| (113)
o 1+§(’Y—1)Mc2
1+ L(y—1)M2
T.—T, +21(7 ) M., (114)
c L1+ Ly —1) M2

where P, and T, are the pressure and temperature at the combustor inlet, and P, and T,, are the pressure
and temperature at the engine inlet. For the combustor, the exit Mach number, temperature, and pressure
are calculated using
Mﬁ[l—}—%(v—l)Mg]_Mf[l—l—%(v—l)Mf]_i_ M? AT, (115)
(yMZ +1)* (yM2 +1)* (yM2+1)* T

P7M3+1
‘M2 +1
YM? +1 M, \*
YMZ2+1 M.

P, = (116)

T, =T. < (117)
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where M,,, P,, and T;, are the Mach number, pressure, and temperature at the inlet to the nozzle, respectively
and ATy is the increase in total temperature across the combustor due to the combustion of fuel. For the
nozzle, the exit properties are

1+io-na ) et - G

(118)

where M, is the Mach number at the engine exit. The pressures and temperatures at the engine exit are
given by

%w—l)M,%]*

1+

Pe:Pn[l T (119)
142 (y—1)M?

s 120

where M., P,, and T, are the Mach number, pressure, and temperature at the engine exit, respectively, and
Ap is the internal nozzle ratio defined as the ratio of the nozzle exit area to the nozzle inlet area.
The thrust per unit width of the engine module is given by*

Ae

. A
T = 1o (Ve = Voo) + (Pe = Poc) 5= — (P2 — Poo) 7 (121)
b ApAn
where T is the engine thrust, 7, is the mass flow through the engine, V,, p. are the flow velocity and pressure
at the engine exit, V5, po are the flow velocity and pressure at the engine inlet, po, is the freestream pressure,
A /b is the exit area per unit width, Ap is the diffuser area ratio, and Ay is the nozzle area ratio. The

moment produced by the thrust force is
h;
Mengine = | Lytanty  + b} T (122)

The mass flow through the engine is a function of the shock angle. Essentially, in order to calculate 1.,
it is necessary to calculate how much mass flow the engine captures. Figure 5 sets up the geometry for this
calculation. It is assumed that the vehicle is operating such that a shock forms off the forebody surface. Let
the engine inlet capture area be denoted by Ay and the spill area be denoted by A;. When a shock forms,
use Figure 5 to compute the capture area, which becomes

_ (Ly=2{L;y—(Lytan Ty, r+hi) cot(Bica—)}) _:
AO - ! s L fcos(ﬁllc:—a) e Sln/Blcd (123)
Ay = LT i (o + 6)
where [j.q is the shock angle for lower surface cd and 6; is defined as
Lt h;
0, = tan~! <M> (124)
Ly
The mass flow through the engine becomes
i o — PooM —A 12
" RT 0 (125)

With the inclusion of the stability derivatives, the engine inlet turning force and moment, and the thrust
and resulting moment, the total aerodynamic forces and moments on the vehicle are

aC
Xtotar = Xepy + Xefy + Xed + Xgn + Xep + Xep + Xey + qwsa—;‘a + Fepre, (126)
oC oC
Ztatal = Zcff + Zcfa + ch + Zgh + Zef + ZSL + Ze(/ + qooS—Za + OOSB—Z# + innlet (127)
0Cu _0Cn qC
Mtotal = Mcff +Mcfa +Mcd+Mgh +Mef +M6L +M +qooSC O{+ S 8(1 2V +Minlet +Mengine (128)

17 of 24

American Institute of Aeronautics and Astronautics



Figure 5. Geometry for Mass Flow Capture Area.

XI. Aeroelastic Effects

Thus far, only a rigid body has been considered. In fact, the vehicle is long and slender and thus highly
flexible. This structural bending affects downstream flow and should be incorporated into the model. In
this section, the aeroelastic effects are included in the analysis. Piston theory is still used to determine the
pressure distribution on the surfaces of the vehicle and much of the analysis already presented can be easily
adapted to included these additional effects.

A. Aeroelastic Model

In order to develop the aeroelastic model, a few assumptions are made. First, the flexible vehicle is modelled
as a cantilever beam fixed at the c.g. (only the forward section of the vehicle is currently considered flexible).
Second, the beams are assumed to have constant mass density, area, and flexural rigidity (EI), where EI is
chosen to give the desired natural frequency of vibration. Also, it is assumed that the flexible effects only
perturb the surface velocities in the z (normal) direction. This assumption is justified using the small angle
approximation, i.e., the deflection of the tip of the beam is small compared to the length of the beam. Lastly,
it is assumed that the pressure distribution over the forebody of the vehicle is constant even when the beam
is deflected.
The transverse vibrations in the beam satisfy the following partial differential equation:8

4 2
EIa w(z,t) —|—ﬁ18 w(z,t)

= 12
ozt ot? 0 (129)

where w(z,t) describes the position of the beam, E is Young’s Modulus, and I is the moment of inertia of
the beam cross-section about the y-axis. To solve this, use the method of separation of variables. Assume

w(z, t) = ®(x)T(t) (130)

Substituting the expression for w(z,t) in Eq. 130 into Eq. 129 and simplifying yields

EI 9'®(z) 1 9°T(t) (131)
m®(z) Ozt  T(t) Ot
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Since the left side of Eq. 131 does not change as time varies, the right side of Eq. 131 must be a constant.
Similarly, since the right side of Eq. 131 does not change as x varies, the left side of Eq. 131 must be a
constant. Let this constant be w?, such that

Bl 9%@) 1 °T(t)
) ot~ T e~ (132)

Utilizing the method of separation of variables, Eq. 132 can be written as two differential equations, one
with respect to position and one with respect to time:

01®(z) "
i — Ble(@) =0 (133)
PT(t) |
S T W T =0 (134)
where 4 = “’;’In The general solution to Eq. 133 is®
®(z) = Cy sin Bz + Cy cos kx + Cs sinh kx + Cy cosh K (135)

Using the following boundary conditions for the forward beam

d’®(zx) _ d3®(z) _
dz? |w:if =0 dz3 |w:if =0 136
d®(z) ( )

CI)(II)|$=0 =0 T|$=0 =0

which state that the bending moment and shear force are zero at the free location (x = Zy) and the
displacement and slope are zero at the fixed location (z = 0), along with the modal shape expression,
(Eq. 135), and simplifying results in the frequency equation

cos BLcosh BL = —1 (137)
Eq. 137 has an infinite number of solutions with the first few given by
BL = 1.8751,4.6941, 7.8548,10.9955, 14.1372, . .. (138)

The values of 3., r = 1,2,3,... in Eq. 138 are called the eigenvalues. Corresponding to these eigenvalues,
the natural modes of the forward beam are®

@, (x) = Ay, [(sinff,Z5 — sinh Bf,Zf) (sin By o — sinh Sy )]

_ _ (139)
+Ay - [(cos By Ty + cosh By, Zs) (cos By rx — cosh By )]
where Ay, is a normalizing factor, selected such that
Ty
A 12 .
/ m®% . (r)dr =1 (140)
0
Thus, Ay, becomes
1
Afr = (141)
\/m |:Af,rpl + Af’TP2 + Af’TP:’,
where
. - . — 2
(sin @y — sinh Bz z)
Afrp, = " [—2 cos By, &, sin B, &), + sinh 28, &), — 4sin B, &), cosh B, &), + 4 cos B, &, sinh B, z,] (142)
k
i Bm e sinh G o+ cosh By o
Af,rpz _ (sm B @y — sin Eszllgcosﬂkmf cos ﬂkmf) (sinﬂkif _ sinhﬁki’f)z (143)
(cosBkif +coshﬁkif)2
Afirp, = 7 [2 cos By, #, sin B, ), + sinh 28, &), — 4 cos B, ), sinh B, &), — 4 sin B, ), cosh B, Zy, + 481, T},] (144)
* k
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B. Forced Response

Let the forcing function in Eq. 129 consist of distributed and concentrated loads so that Eq. 129 can be
written as

4 2
EIa w(z, t) 4 0*w(z,t)

A (U R Tty (145)
where §(z) is the dirac delta function defined as
S —a;) =4 * i e = (146)
0 if x#uxj
From the expansion theorem, the solution to Eq. 145 is
w(z,t) =Y g (x)ny.(1) (147)
r=1

where 7y, (t) is the generalized modal coordinate, for the forebody beam, that satisfies

i () + 2C0wp e () + wF g (t) = Npo(t) (148)

Here, Ny ,(t) is a generalized force for the k" mode shape of the forebody beam, defined by®

Ny - | Y by @) f (o )+ 3 B () E (1) (149)

j=1

where n is the number of concentrated loads on the beam. Given the loading on the forebody beam, the
generalized force for the first mode becomes

Zy zy
Nf71(t) = / (I>f71(cc)Pcfd:c */ <I>f,1(w)Pcddw (150)
0 if*Lf
Evaluating this expression produces
Af,IPcf . _ . _ _ _
Nya(t) = ———[(—sin{B1Zs} + sinh {B1Z}) (cos {17} + cosh {17} — 2)]
b1
AP, _ _ . _ . _
% [(cos {B1Z s} + cosh {f1Zf}) (sin{B1Zs} — sinh {B1Z¢})]
As1 P, . _ . _ _ _ _ _
% [(—sin{B1Z} + sinh {B1Z}) (cos {B1Zs} — cos {B1 (T — L)} + cosh {B1Z} — cosh {By (T — Ly)})]
Af 1P, _ _ . _ . _ . _ . _
= [(cos {Bra} + cosh {B17}) (sin (B} = sin {1 (25 — Ly)} = sinh {812} + sink {81 (7 — Ly)})]
(151)
The solution to Eq. 148 for the rt* mode is®
1 t
0y (t) = / Ny (7) exp= =7 i (w7 alt — 7)) dr+
Wrrd Jo
c (152)
exp_gf””f”t COS Wy, rqt + (Jcir)l sinwg rqt | n¢,-(0) + [w exp_Cf’r‘”f“t sinwg rqt| 7¢,7(0)
1-¢2,)° ford
%
where w¢ rq = Wy (1 — {12%) . The initial conditions are given by®
7.0 (0) = [y M@, (z)w(z,0)dx (153)

N, (0) = [ M@y, (2)i(z,0)da
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Evaluating the expressions in Eq. 153, for the first forebody mode, yields
(154)

In order to incorporate aeroelastic effects into the model, a few simplifying assumptions are made. First,
the vehicle does not stretch or compress along the x-axis. Second, for small displacements, when the beams
(vehicle) flexes, there is no change in the x direction displacement. With these assumptions, aeroelastic
effects only occur in the z-direction.

The aeroelastic effects can be accounted for by taking the time derivative of Eq. 147,

Z<I>f, )i, (t) (155)

and including this effect in the expressions for the velocities on the upper and lower surfaces, namely Eqs. 11,
14, and 15. The differential forces on the upper and lower forebody surfaces, taking into account the forward
section, becomes

dF.; = (=P — pra1 {[u + gtanm y (x — Ty)|sinT y — [w — gz + w(x,t)] cos T,y }) dAcsncs (156)

dF.q = (—P2 — paas {{[u — gtanm, (x — Zy)]sin7y 1 + [w — gz + w(x,t)] cos 71,1 }) dAcancd (157)

With these differential forces, stability derivatives due to bending of the vehicle can be determined. For the
normal force,

1 Ty Ty 1 Ty Ty

(Cz)y = P / (dFcf), "’/ (dFcd),_y | = —S/ —p1a1W CoS 7‘1,Ud$+/ —p2a21 cos Ty, rdx

do 0 :E_f—Lf do 0 f_f—Lf

(158)
Substituting Eq. 155 into Eq. 158 produces
1 zf zf
o= —5 | [ @+ [ @,
9o Tf—Ly
1 Ty zf (159)
= q—S —plalz@ﬁ z)ng,-(t) cos Ty yde + —pgangiﬁ x)nNy,r(t) cos i, pdx
oo Tf— Lf

which, for one mode becomes

1 [ N
8_CZ = —/ —p1a1®@¢1(x) cosn,Udm"‘/ —p2a2®1(x) cos Ty rdx
aan qoos ) Zp—Ly
_ 1 {—2p1a1 cosT1,uAf 1 (sin 8175 — sinh B1%y)
—3 % (160)

_ p2a2c08T1,LAf1
B1GocS
P20z COS T1,LAf 1
B1qo0S

[(sin B1Z5 — sinh 1Z¢) (cos B1 (T¢ — Ly) + cosh 81 (T5 — Ly))]
[(cos B1Z + cosh 1Zf) (—sinBu (Tf — L) + sinh By (T — Ly))]
where Ay is the normalizing factor associated with the first mode. Using the assumption that the flexible
effects only perturb the surface velocities in the z-direction, the axial force stability derivative associated

with the flexible effect becomes
0Cx

Ma

-0 (161)

For the pitching moment,

(Car)y = 1_[/0”x<chf>z_m+ [ x(chdn_w] (162)

(]ooSc rg—Ly
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For the first mode only,
0Cm _ 2Ayf1pra1cosTiy
diga PlesoSc

Ay 1p2a2cosTy L,
B%qooSE

A
LL1P2RCORTLL (31 (74 — Ly) (sin fuiiy cosh By (25 — Ly) + cos frzy sinh By (25 — Ly))]

[1 —cosf31Zf + cos B1%f cosh B1Zy — coshﬁlif}
+ [2 —cosfi1Ly + 31 (if - Lf) sinfB1Ly +2cosB1Zy coshﬁla’cf}

+

ﬁ%QOoSE
A cos
+% [— sin 12 sinh By (7 — Ly) — cos p1 s cosh By (35 — Ly)] (163)
1 oo
A
+%ngm [sinh 812 sin By (7 — Ly) — coshp1 s cos By (27 — Ly)]
1 o0

Ay 1p2a2cosTy L

+
ﬂ%QOoSE

[—B1 (if — Lf) sinh 312 ¢ cos 31 (if — Lf) - A (if — Lf) cosh 31 ¢ sin 31 (;if — Lf)}
Ay 1p2a2cosTy L
ﬂ%QOoSE

With the inclusion of the flexible stability derivatives, the total aerodynamic forces and moments on the
vehicle are

+ [-B1 (Zf — Lg)sinhB1 Ly — cosh 1 L]

aC
Xtotar = Xefy + Xefy + Xed + Xgn + Xep + Xep + Xey + qwsa—;‘a + Fainior (164)
0Cz 9Cz qc aCz .
Ztotat = Zefy + Zefe + Zeat Zgh + Zef + Zey, + Zey + Qoosma + qOoSa—q 2V +Fee + qOOSWMWJ (165)
_0Cy _0Cy qc _0Cum .
M;iotar = Mcff+Mcfa+Mcd+Mgh+Mef+MeL+MeU +qooSC Do CM—I—qooSCa—q m+Minlet+Mengine+qOoSCa?f’l 7)7f,1
166

XII. Equations of Motion for a Flexible Vehicle

The equations of motion for the flexible vehicle are*

Vp = L (Tcosa — D) — gsin(§ — a)
& = mLVT(—TsinafL)—}-Q-FV%COS(G*Oé)
Iy Q — Wyijy = M (167)

kpiip +2Cpwpny +wing = Ny — Uy
h = Vrsin (6 — «a)

where B
\I/f = fOEf $(I>f71($)d$

168
kf:1+2—2 (168)

Clearly, the flexible effects are coupled into the pitch rate equation. In addition to this, the bending of the
structure has an effect on the angle of attack of the vehicle. Since engine performance is a function of shock
angle and shock angle is a function of angle of attack, a significant change to the vehicle’s performance can
occur due to structural bending. It is assumed that the entire forebody observes the same change in angle
of attack as seen at the nose of the vehicle. In other words, the worst case change in angle of attack is used
for the entire forebody. This change in angle of attack is computed as:

Aa = arctan [® (Z£) ng,1(t)] (169)

XIII. Results

At this point, only initial simulation results are available. Currently, the model has been simulated open-
loop, with a fixed control surface deflection, to ensure that the model is operating correctly. One point of
interest that can be obtained from this simple simulation is the contribution to the forces and moments due
to the inclusion of unsteady effects. Figure 6 shows the steady and unsteady X force, Figure 7 shows the
steady and unsteady Z force, and Figure 8 shows the steady and unsteady pitching moment. Obviously, the
unsteady components will have an impact on the total forces and moments, as these terms are not negligible
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compared to the steady terms. In fact, the unsteady pitch moment has the largest effect, followed by the
unsteady Z force. The unsteady X force has little effect on the total X force.

Steady and Unsteady X Force vs. Time
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Figure 6. Steady and Unsteady X Forces.

XIV. Conclusions

In this work, piston theory is used to develop a model for the longitudinal dynamics of a hypersonic
vehicle. In particular, velocities of flow normal to the surface of the vehicle are used in a first order piston
theory framework to determine the pressures on the surfaces of the vehicle. The pressures are then integrated
over the body to determine the forces acting on the vehicle. Piston theory is useful here because it allows
the inclusion of unsteady aerodynamic effects, which are not captured using other techniques.
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Steady and Unsteady Z Force vs. Time

] 1 1 1 1 1 1
' ' ] ' ] '

' ' " ' ] i ==
[ ] " [l " [} =}
' ' " " ] [ = m
' ' " ' ' '

' ' ' ' ] ' .m ..nl.w
' ' ] ' ] ' Q @

ek R e e R LR o

' ' " [ " " = =
! ' ' ! ' ! (75 Jn
' ' ' ' " '

' ' ] [ ] i

' ' " " ] [

' ' ' ' ] '

' ' ] ' ] '

' ' ' ' ] i

bl T R o= mm - e Feemea = ==q -

' ' ' [ ] [

' ' ' ' " '

' ' ' ' " ' '
' ' ] 0 ] i '
' ' ' ' " ' '
' ' ] ' ] ' '
' ' ] ' ] ' '

' ' ] ' ] ' '
e demmma B femammm .- Fesmea [t #===== —
' ' " [ ] [ '

' ' ] ' ] ' '

' ' ' ' ] i '

' ' ' ' " ' '

' ' ' " " [ '

' ' ' [ " " '

' ' ] ' ] ' '

' ' " " ] ' '

b R o fomam e remm—-— Frmmm—- tmmm——— =
' ' " " [ [ '

' ' ' ' ] ' '

' ' ] ' ] ' '

' ' ] [ " ' '

' ' ' " " ' '

' ' ' ' " ' '

' ' ' ' ] ' '

' ' " ' ] ' '

o = = = [ PR [ P —— T p—— e s a8 Lesssas b ==ge= hiee ==l
[ [ ' ] ' ' '
' ' ] ' ] ' '
' ' ' ' ] ' '
' ' ] ' ] ' '
' ' ] [ ] ' '
' ' " [ [ ' '
' ' ' ' ' ' '
' ' ] ' " ' '
5 = = =2 B = % = == = b sisis =2k Lk = = = s e s aais = Lad =S
' [ [ ] " ] '
' ' ' ' ] ' '
" ' ] ' ] ' '
" ' ' ' ] ' '
" ' " ' ] ' '
" ' " [ ] [ '
' ' ' ] ' '
' ' ' " ' '
e e e ol e e =a = = =ik BE == s e = e o Kee =
[ ] ] " ] '
' ] " ] ' '
' ] ' ] ' '
' ' ' ] ' '
' " ' ] ' '
' " ' [ ' '
' ] ' " ' '
' 1 i " 1 |
A A i 'l i A
o L= o o o o =] =] [=J
(=] o o =] o o (=] (=]
(=] =] o o o o =] (=]
o™ ™~ < (=) (== o o~ <t
i i V — ~— —
' i [

(sq)) aolo4 7

14 16

12

06 0.8
Time (sec)

04

0.2

Figure 7. Steady and Unsteady Z Forces.
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Figure 8. Steady and Unsteady Pitching Moments.
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